Course Code: 20HS0836

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS) :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Discrete Mathematics (20HS0836)

Course & Branch: MCA I Year I-Sem Regulation: R20

UNIT –I Mathematical Logic

1	a) What is logical equivalence? Explain with an example.	[L1][L2][CO1]	[6M]
	b) Explain the difference between the principle disjunctive and conjunctive	[L2][CO1]	[6M]
	normal form.		[OIVI]
2	a) Construct the truth table for the following formula $\neg(\neg P \lor \neg Q)$	[L6][CO1]	[6M]
	b) Construct the truth table to Show that $\neg P \land (Q \land P)$ is a contradiction.	[L6][CO1]	[6M]
3	a)Define NAND,NOR & XOR and give their truth tables.	[L1][CO1]	[6M]
	b) Show that the following set of premises are inconsistent.	[L2][CO1]	[6M]
	$P \rightarrow Q, P \rightarrow R, Q \rightarrow \sim R, P.$		[01/1]
4	a) Show that $S \vee R$ is a tautologically implied by $(P \vee Q) \wedge (P \to R) \wedge (Q \to S)$	[L2][CO1]	[6M]
	b) Show that $(P \lor Q) \to R \equiv (P \to R) \land (Q \to R)$	[L2][CO1]	[6M]
5	a) Obtain the disjunctive normal form $P \rightarrow ((P \rightarrow Q) \land \neg(\neg Q \lor \neg P))$	[L3][CO1]	[6M]
	b)Obtain the principle conjunctive normal form $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$	[L3][CO1]	[6M]
6	a)Prove that $(\exists x)(P(x) \land Q(x)) \Rightarrow (\exists x)P(x) \land (\exists x)Q(x)$	[L2][CO1]	[6M]
	b)Show that $(\forall x)(P(x) \to Q(x)) \land (\forall x)(Q(x) \to R(x)) \Rightarrow (\forall x)(P(x) \to R(x))$	[L2][CO1]	[6M]
7	a)Define Quantifiers and types of Quantifiers with examples.	[L1][CO1]	[6M]
	b)Show that $(\exists x) M(x)$ follows logically from the premises $(\forall x)(H(x) \rightarrow M(x))$ and $(\exists x)H(x)$	[L2][CO1]	[6M]
8	a) Use indirect method of proof to prove that	[L2][CO1]	[6M]
	$(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x) \lor (\exists x)Q(x)$ b) Define Maxterms & Minterms of P & Q & give their truth tables	[L1][CO1]	[6M]
9	a) Show that $\sim P$ is a valid conclusion from the premises	[L2][CO1]	[6M]
	$\sim (P \land \sim Q)$, $\sim Q \lor R$, $\sim R$		
	b) Obtain PCNF of $A = (p \land q) \lor (\neg p \land q) \lor (q \land r)$ by constructing PDNF	[L3][CO1]	[6M]
10	a) Show that $P \vee Q$ follows from P	[L2][CO1]	[6M]
	b) Show that $\Rightarrow^s (\neg Q \land (P \rightarrow Q)) \rightarrow \neg P$	[L2][CO1]	[6M]
	<u>L</u>	I	

${\bf Relations~\&~Algebraic~Structures}$

1	a) What is a compatability relation? Explain the procedure to find the maximal	[L1][L2][CO2]	[6M]
	compatibility blocks.		
	b) Define group, sub group, homomorphism and isomorphism.	[L1][CO2]	[6M]
2	a) If R be a relation in the set of integers Z defined by	[L2][CO2]	[6M]
	$R = \{(x, y) : x \in Z, y \in Z, (x - y) \text{ is divisible by 6}\}$ then prove that R is an equivalence	11.4.4	
	relation.		
	b)Let $A=\{1,2,3,4,5,6,7\}$, determine a relation R on A by	[L2][CO2]	[6M]
	$aRb \Leftrightarrow 3 \text{ divides}(a-b)$, show that R is an equivalence relation.	FI 21FG 21	5403.53
3	Let $A = \{ 1,2,3,4 \}$ and let $R = \{ (1,1),(1,2),(2,1),(2,2),(3,4),(4,3),(3,3) \}$	[L3][CO2]	[12M]
	(4,4)} be an equivalence relation on R .Determine A/R.		
			5407.57
4	Let A be a given finite set and $P(A)$ its power set. let \subseteq be the inclusion	[L6][CO2]	[12M]
	relation on the elements of P(A). Draw the Hasse diagram of (P(A), \subseteq) for i) A = { a }		
	$\begin{array}{ccc} & \text{ii)} & \text{A} = \{ a , b \} \\ & \text{iii)} & \text{A} = \{ a , b \} \end{array}$		
	iii) $A = \{ a,b,c \}$ iv) $A = \{ a,b,c,d \}$.		
5	a) Define a binary relation. Give an example. Let R be the relation from the set	[L1][L2]	[6M]
	$A = \{1, 3, 4\}$ on itself and defined by $R = \{(1, 1), (1, 3), (3, 3), (4, 4)\}$ then	[L5][CO2]	
	find the matrix of R, draw the graph of R.		
	b) Verify $f(x) = 2x + 1$, $g(x) = x$ for all $x \in R$ are bijective from $R \to R$	[L4][CO2]	[6M]
6	a) Let $f: A \to B$, $g: B \to C$, $h: C \to D$ then prove that $ho(gof) = (hog)of$	[L2][CO2]	[6M]
	b) If $f: R \to R$ such that $f(x, y) = 2x + 1$ and $g: R \to R$ such that $g(x) = \frac{x}{3}$	II 411CO21	[CM]
		[L4][CO2]	[6M]
7	then verify that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ a) Prove that the set Z of all integers with the binary operation *, defined as	[L2][CO2]	[6M]
	$a*b=a+b+1, \forall a,b \in Z$ is an abelian group.		
	b) Define and give an examples for group, semigroup, subgroup &abelian	[L1][CO2]	[6M]
8	group. a) Let $S = \{a, b, c\}$ and let * denotes a binary operation on 'S' is given below	[L2][CO2]	[6M]
	also let $P = \{1,2,3\}$ and addition be a binary operation on 'p' is given below.		[UIVI]
	show that $(S,*) & (P,\oplus)$ are isomorphic.		
	(+) 1 2 3 * A B C		
	1 1 2 1 A A B C		
	2 1 2 2 B B B C		
	3 1 2 3 C C B C		
	b) On the set Q of all rational number operation * is defined by	EL OTEGOGO	563.53
	a*b=a+b-ab Show that this operation Q forms a commutative monoid.	[L2][CO2]	[6M]
•		II 311CO33	[(N/I]
9	a) Show that the set $\{1,2,3,4,5\}$ is not a group under addition and multiplication	[L2][CO2]	[6M]
	modulo 6.	EL OTEGOGO	563.53
		[L2][CO2]	[6M]

R20

	b) Show that the binary operation * defined on $(R,*)$ where $x*y=x^y$ is not		
	associative.		
10	a) Show that the set of all roots of the equation $x^4 = 1$ forms a group under	[L2][CO2]	[6M]
	multiplication.		
	b) Explain the concepts of homomorphism and isomorphism of groups with	[L2][CO2]	[6M]
	examples		

UNIT-3 Elementary Combinatorics

1	a) Explain Pigeon hole principle and give an example.	[L2][CO3]	[6M]
	b) How many ways can we get a sum of 8 when two indistinguishable dice are	[L4][CO3]	[6M]
	rolled?		
2	a) Enumerate the number of non negative integral solutions to the inequality	[L5][CO3]	[6M]
	$x_1 + x_2 + x_3 + x_4 + x_5 \le 19.$		
	b) How many integral solutions are there to $x_1 + x_2 + x_3 + x_4 + x_5 = 20$ where each	[L4][CO3]	[6M]
	(i) $x_i \ge 2$ (ii) $x_i > 2$		
3	a) How many numbers can be formed using the digits 1, 3, 4, 5, 6, 8 and 9 if no	[L4][CO3]	[6M]
	repetitions are allowed?		
	b) What is the co-efficient of (i) $x^3 y^7$ in $(x+y)^{10}$ (ii) $x^2 y^4 in(x-2y)^6$	[L3][CO3]	[6M]
4	Out of 5 men and 2 women, a committee of 3 is to be formed. In how many ways	[L4][CO3]	[12M]
	Can it be formed if at least one woman is to be included?		
5	a) The question of mathematics contains two questions divided into two groups of	[L4][CO3]	[6M]
	5 questions eachIn how many ways can an examinee answer six questions taking		
	atleast two questions from each group.		
	b) How many permutations can be formed out of the letters of word "SUNDAY"? How	[L4][CO3]	[6M]
	many of these (i) Begin with S? (ii) End with Y? (iii) Begin with S & end with Y? (iv) S &Y always		
	together?		
6	a) In how many ways can the letters of the word COMPUTER be arranged? How	[L4][CO3]	[6M]
	many of them begin with C and end with R? how many of them do not begin with		
	C but end with R?		
	b) Outof 9 girls and 15 boys how many different committees can be formed each	[L4][CO3]	[6M]
	consisting of 6 boys and 4 girls?		
7	a) Find the coefficient of (i) $x^3y^2z^2$ in $(2x-y+z)^9$ (ii) x^6y^3 in $(x-3y)^9x^6y^3$	[L5][CO3]	[6M]
	b) Find how many integers between 1 and 60 that are divisible by 2 nor by 3 and	[L5][CO3]	[6M]
	nor by 5.Also determine the number of integers divisible by 5 not by 2, not by 3.		
8	a) Out of 80 students in a class, 60 play foot ball, 53 play hockey and 35 play both	[L4][CO3]	[6M]
	the games .How many students (i) do not play of these games? (ii) Play only		
	hockey but not foot ball.	II 511002	[() 4]
	b) A Survey among 100 students shows that of the three ice cream flavours	[L5][CO3	[6M]
	vanilla, chocolate, and straw berry. 50 students like vanilla, 43 like chocolate, 28 like		
	straw berry,13 like vanilla and chocolate 11 like chocolate and straw berry,12 like straw berry and vanilla and 5 like all of them.		
	Find the following.		
<u> </u>	I me die teneming.		

R20
1120

	Chocolate but not straw berry	,	
	2. Chocolate and straw berry but not vanilla		
	3. Vanilla or chocolate but not straw berry		
9	a) How many different license plates are there that involve 1,2or 3 letters followed	[L4][CO3]	[6M]
	by 4 digits?		
	b)Find the minimum number of students in a class to be sure that 4 out of them	[L5][CO3]	[6M]
	are born on the same month.?		
10	a) Applying pigeon hole principle show that of any 14 integers are selected from	[L2][CO3]	[6M]
	the set $S = \{1, 2, 3,, 25\}$ there are at least two whose sum is 26. Also write a		
	statement that generalizes this result.		
	b) Show that if 8 people are in a room, at least two of them have birthdays that	[L2][CO3]	[6M]
	occur on the same day of the week.		

UNIT-4 Recurrence Relations

1	a) Solve $a_n = a_{n-1} + f(n)$ for $n \ge 1$ by using substitution method.	[L6][CO4]	[6M]
	b) Determine the coefficient of x^{20} in $(x^3 + x^4 + x^5 + \cdots)^5$	[L3][CO4]	[6M]
2	a) Determine the sequence generated by (i) $f(x) = 2e^x + 3x^2$ (ii) $f(x) = e^{8x} - 4e^{3x}$.	[L3][CO4]	[6M]
	b) Find the sequence generated by the following generating functions (i) $(2x-3)^3$ (ii) $\frac{x^4}{1-x}$	[L4][CO4]	[6M]
3	a) Solve $a_n = a_{n-1} + 2a_{n-2}$, $n \ge 2$ with the initial conditions $a_0 = 0$, $a_1 = 1$	[L6][CO4]	[6M]
	b) Solve $a_{n+2} - 5a_{n+1} + 6a_n = 2$ with the initial conditions $a_0 = 1$, $a_1 = -1$	[L6][CO4]	[6M]
4	a) Solve the R.R $a_{n+2} - 2a_{n+1} + a_n = 2^n$ with initial conditions $a_0 = 2, a_1 = 1$	[L6][CO4]	[6M]
	b) Using generating function to solve $a_n = 3a_{n+1} + 2$, $a_0 = 1$	[L6][CO4]	[6M]
5	a) Solve the following $y_{n+2} - y_{n+1} - 2y_n = n^2$	[L6][CO4]	[6M]
	b) Solve $a_n - 5a_{n-1} + 6a_{n-2} = 1$	[L6][CO4]	[6M]
6	a) Solve the recurrence relation $a_r = a_{r-1} + a_{r-2}$ using generating function.	[L6][CO4]	[6M]
	b) Solve the recurrence relation using generating functions $a_n - 9a_{n-1} + 20a_{n-2} = 0$	[L6][CO4]	[6M]
	for $n \ge 2$ and $a_0 = -3$, $a_1 = -10$		
7	a) Solve the recurrence relation $a_n = a_{n-1} + \frac{n(n+1)}{2}$	[L6][CO4]	[6M]
	b) Solve $a_k = k(a_{k-1})^2$, $k \ge 1$, $a_0 = 1$	[L6][CO4]	[6M]
8	a) Solve $a_n = 2a_{n-1} - a_{n-2}$ with initial conditions $a_1 = 1.5 \& a_2 = 3$	[L6][CO4]	[6M]
	b) Solve $a_n = 3a_{n-1} - a_{n-2}$ with initial conditions $a_1 = -2 \& a_2 = 4$	[L6][CO4]	[6M]
9	a) Solve $a_n - 7a_{n-1} + 10a_{n-2} = 4^n$	[L6][CO4]	[6M]
	b) Solve $a_n = a_{n-1} + 2a_{n-2}$ $n \ge 2$ with the initial condition $a_0 = 2$, $a_1 = 1$	[L6][CO4]	[6M]
10	a) Solve $a_n - 5a_{n-1} + 6a_{n-2} = 2^n$, $n \ge 2$ with the initial conditions	[L6][CO4]	[6M]
	$a_0 = 1$, $a_1 = 1$. Using generating functions.		
	b) Solve $a_n - 4a_{n-1} + 4a_{n-2} = (n+1)^2$ given $a_0 = 0$, $a_1 = 1$	[L6][CO4]	[6M]

UNIT-5 Graph Theory

1	a) Define spanning tree and Hamiltonian graph.	[L1][CO5]	[6M]
	b) State Euler's formula and Handshaking theorem	[L1][CO5]	[6M]
2	a) Explain indegree and out degree of a graph. Also explain about the adjacency matrix representation of graphs. Illustrate with an example?	[L2][CO5]	[6M]
	b) Give an example of a graph that has neither an Eulerian circuit nor a Hamiltonian circuit.	[L2][CO5]	[6M]
3	a)Show that the maximum number of edges in a simple graph with n vertices is	[L2][CO5]	[6M]

	$\frac{n(n-1)}{2}$	[L2][CO5]	[6M]
	b) Explain about complete graph and planar graph with an example		
4	a) A graph G has 21 edges, 3 vertices of degree 4 and the other vertices are of degree 3. Find the number of vertices in G?	[L5][CO5]	[6M]
		[] 1][CO5]	[CM]
	b)Define isomorphism. Explain Isomorphism of graphs with a suitable example	[L1][CO5]	[6M]
5	a) Suppose a graph has vertices of degree 0, 2, 2, 3 and 9. How many edges does the graph have?	[L4][CO5]	[6M]
	b) Give an example of a graph which is Hamiltonian but not Eulerian and vice versa	[L2][CO5]	[6M]
6	a) Let G be a 4 – Regular connected planar graph having 16 edges. Find the number	[L5][CO5]	[6M]
	of regions of G.		
	b) Draw the graph represented by given adjacency matrix	[L6][CO5]	[6M]
	(i) $ \begin{bmatrix} 1 & 2 & 0 & 1 \\ 2 & 0 & 3 & 0 \\ 0 & 3 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} $ (ii) $ \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 2 \\ 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} $		
	(i) $\begin{bmatrix} 2 & 0 & 3 & 0 \\ 0 & 2 & 1 & 1 \end{bmatrix}$ (ii) $\begin{bmatrix} 0 & 1 & 1 & 2 \\ 2 & 1 & 1 & 0 \end{bmatrix}$		
	$\begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 0 & 1 \end{bmatrix}$		
7	a)Show that in any graph the number of odd degree vertices is even.	[L5][CO5]	[6M]
	b)Identify whether the following pair of graphs are isomorphic or not?	[L2][CO5]	[6M]
	V_1 V_5 V_7 V_7 V_8 V_7' V_8' V_7' V_{3}' G_1' (a)		
8	a)Explain about the Rooted tree with an example?	[L5][CO5]	[6M]
	b)Show that the two graphs shown below are isomorphic?	[L2][CO5]	[6M]
	obside that the two graphs shown below are isomorphic?		[OIVI]
	(b) a' b' c'		
9	a)Find the chromatic polynomial & chromatic number for K _{3,3}	[L5][CO5]	[6M]
	b)Explain graph coloring and chromatic number. Give an example	[L2][CO5]	[6M]
10	Explain Depth- First-Search, Breadth-First-Search Algorithm	[L2][CO5]	[12M]

PREPARED BY Dr. R.LAKSHMI DEVI Assistant Professor, Dept. of Maths, SIETK.